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Summary This paper describes the development and testing of a system whereby one can communicate  through a computer  by 
using the P300 component  of the event-related brain potential (ERP). Such a system may be used as a communicat ion aid by 
individuals who cannot  use any motor system for communicat ion (e.g., ' locked-in'  patients). The 26 letters of the alphabet, together 
with several other symbols and commands ,  are displayed on a computer  screen which serves as the keyboard or prosthetic device. The 
subject focuses attention successively on the characters he wishes to communicate.  The computer  detects the chosen character on-line 
and in real time. This detection is achieved by repeatedly flashing rows and columns of the matrix. When the demen t s  containing the 
chosen character are flashed, a P300 is elicited, and it is this P300 that is detected by the computer.  We report an analysis of the 
operating characteristics of the system when used with normal volunteers, who took part in 2 experimental sessions. In the first 
session (the pilot s tudy/ t ra in ing  session) subjects at tempted to spell a word and convey it to a voice synthesizer for production. In 
the second session (the analysis of the operating characteristics of the system) subjects were required simply to attend to individual 
letters of a word for a specific number  of trials while data were recorded for off-line analysis. 

The analyses suggest that this communicat ion channel can be operated accurately at the rate of 0.20 bi ts /sec.  In other words, 
under  the conditions we used, subjects can communicate  12.0 bits, or 2.3 characters, per min. 
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Several hundred studies have demonstrated that, 
when subjects are assigned a task that requires 
them to determine to which of 2 possible cate- 
gories each item in a series belongs, and one of the 
categories occurs rarely, these rare items will elicit 
an event-related brain potential (ERP) with an 
enhanced positive-going component with a latency 
of about 300 msec, labeled the P300. This experi- 
mental arrangement has come to be called the 
'oddball '  paradigm. For reviews see Pritchard 
(1981), Hillyard and Kutas (1983) and Donchin et 
al. (1986a). It has been amply documented that 
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the amplitude of the P300 varies directly with the 
relevance of the eliciting events and inversely with 
the probability of the stimuli. The elicitation of 
P300 depends critically, therefore, on the subject's 
ability to discriminate the events and assign them 
to the appropriate categories. 

Note that it is not necessary that the subject 
report the occurrence of a target event by overt 
means (e.g., button press). Often the subject is 
required only to maintain a running mental count 
of the number of occurrences of the target. In 
other words, the appearance of the P300 signals 
the subject's recognition of the rare event without 
recourse to verbal or motor means of communica- 
tion. This attribute of the P300 suggests that it 
may be possible to develop a 'mental  prosthesis' 
utilizing the oddball paradigm that would permit 
communication by persons who, as a result of 
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injury or disease, have been deprived of overt 
means of communication. Such a prosthesis would 
operate by allowing a subject to communicate a 
choice among a series of items. If the items consist 
of, say, the alphabet, then the subject can spell out 
a message by successively choosing from among 
the 26 letters and communicating his choices via 
the P300. While it is fairly obvious how such a 
system can be implemented in a standard oddball 
paradigm, it is also obvious that the process would 
be unacceptably slow. The system we describe in 
this report accelerated communication by using 
subsets of a matrix of characters as the critical 
eliciting events and by presenting these events at 
an unusually high rate. The purpose of the study 
was to determine if intact young adults could use 
this version of the oddball paradigm to com- 
municate their choices to a computer and to de- 
termine the operating characteristics of such a 
system. 

The need for systems that could allow disabled 
individuals to communicate with computers has 
spurred the development of numerous devices, all 
of which utilize one or another motor  system. For 
example, quadriplegic patients with good control 
of the neck muscles can activate buttons with a 
rod attached to the forehead. Increasingly 
sophisticated prostheses have been developed to 
allow individuals with more severe disabilities to 
communicate through the extension of residual 
motor  functions. These include a typewriter that 
can be operated by a light beam directed by head 
movements  (Soede et al. 1974); a typewriter con- 
trolled by a key embedded in a dental palate 
operated with Morse code (Saarnio 1974; see also 
H a m m o n d  1974; Torok 1974; Vasa and Lywood 
1976; Shwedyk and Gordon 1977; Hardiman et al. 
1979; Jardine et al. 1984). 

As it is not unusual for the oculomotor system 
to remain functional when other voluntary motor  
systems are damaged quite severely, numerous 
devices operate by detecting eye movements or 
fixations as a means of communication (Rinard 
and Rugg 1976; Wardell 1977; Sutter 1983; ten 
Kate  et al. 1984; Rubin and Stark 1984). 

All of these systems substitute one motor  sys- 
tem for another. In some patients, however, no 
functional voluntary motor  systems remain suffi- 

ciently intact, even though these patients do retain 
sensory and cognitive abilities. For such individu- 
als a 'menta l  prosthesis' that utilizes non-motor  
manifestations of mental activity for communica- 
tion may be of use. The system we describe here 
allows the subject to push a metaphorical  switch 
by focusing attention on one of a series of stimu- 
lus events. The discrimination between the event 
on which the subject is focusing and the other 
events in the series carries the information that the 
subject is communicating. By detecting which of 
the events in the series generates a P300, the 
appropriate computer-implemented algorithm can 
identify the message the subject is trying to com- 
municate and send it for him or her (Farwell et al. 
1986; Donchin 1987). 

The system works as follows: a 6-by-6 matrix 
containing the letters of the alphabet and a few 
1-word commands (Fig. 1) is displayed on a com- 
puter-controlled CRT screen. The 's t imulus events'  
that occur in the test consist of intensifications of 
either a row or a column of the matrix. The 
subject attempts, at any instant, to communicate 
the contents of 1 cell in the matrix. As the subject 
focuses attention on that cell, the column and the 
row containing the cell become ' relevant '  events. 
There are 12 possible events (6 rows and 6 col- 
umns) only 2 of which are relevant. These events 
are therefore both task-relevant and rare. Thus, 
any flash that contains the cell on which the 
subject is focusing should elicit a P300. The ampli- 
tude of the P300 following each flash is assessed, 
and the attended cell is identified as the cell at the 
intersection of the row and column that elicit the 
largest P300s. 

We report here a study in which 4 healthy 
volunteers used the system to communicate  a 5- 
letter word to a computer. The primary purpose 
was to determine the number  of trials and the rate 
of event presentation that are required to achieve 
a specified level of accuracy in communication. 

Methods 

Subjects 
Four healthy subjects, 3 females and 1 male, 

20-36 years old, participated in the study. 
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Data acquisition and analysis 
The electroencephalogram (EEG) was recorded 

from Ag-AgC1 Beckman Biopotential electrodes 
placed at the Pz (parietal) site (10/20 interna- 
tional system), referred to linked mastoids. This 
site was chosen because it is where the largest 
amplitude P300 is recorded in young adults 
(Pritchard 1981; Hillyard and Kutas 1983; 
Donchin et al. 1986a). Electro-oculogram (EOG) 
was recorded from sub- and supraorbital elec- 
trodes (above and below the right eye). The sub- 
jects were grounded at the forehead. Electrode 
impedance did not exceed 5 kl2. Brain electrical 
activity was amplified by Grass Model 12 ampli- 
fiers with low- and high-pass filters set at half-am- 
plitude frequencies of 35 and 0.02 Hz, respec- 
tively. These signals were digitized at a rate of 50 
Hz. Data were analyzed in real time in the p i lo t /  
training session and off-line in the assessment 
session, both of which are described in detail 
below. 

Each subject participated in 2 sessions. The 
first served to assess the feasibility of the tech- 
nique and to familiarize the subjects with the 
apparatus and procedures. In the second we ob- 
tained data that allowed us to assess the operating 
characteristics of the system. 

The communication system 
Subjects were presented with a 6-by-6 matrix 

whose cells contained the letters of the alphabet as 
well as several 1-word commands for controlling 
the system (see Fig. 1). The matrix was displayed 
on a computer-controlled CRT. In every 'trial, '  
each of the 6 rows of the matrix, or each of the 6 
columns, was intensified for a period of 100 msec. 
In the first session the inter-stimulus interval (ISI) 
was 500 msec. In the second session data were 
acquired with both a 500 msec and a 125 msec 
ISI. The ISI was measured from the beginning of 
the intensification of each row/co lumn and of the 
subsequent row/column to be intensified. The 
rows were selected for intensification in a random 
order, and then the columns were intensified in a 
similar manner. 

Subjects were instructed to attend to a given 
letter and to keep a running mental count of the 
number of times it flashed. In the first session the 

CRT Display Used in the Mental  Prosthesis 

MESSAGE 

BRAIN 

Choose one le t te r  or command 

A G M S Y * 

B H N T Z * 

C I O U * TALK 

D J P V FLN SPAC 

E K Q W * BKSP 

F L R X SPL QUIT 
Fig. 1. CRT display used in the mental prosthesis. The rows 
and columns of the matrix were flashed alternately. The letters 
selected by the subject ('B-R-A-I-N') were displayed at the top 

of the screen in the pilot study. 

subjects completed 6 blocks of 120 trials each. The 
first session was concluded with a block of trials 
in which we used a real-time signal-detection al- 
gorithm to allow subjects to communicate the 
word ' B R A I N '  to the computer. 

Subjects selected each of the letters in the word 
'BRAIN '  in turn, and silently counted the flashes 
of the row or column containing the letter until 
the system displayed the letter it had selected in a 
specified position on the screen (see Fig. 1). After 
the letters spelling the word ' B R A I N '  had been 
displayed, the subject selected the ' T A L K '  com- 
mand, and the word was sounded by means of a 
Votrax speech synthesizer. In a few cases the 
computer displayed a letter other than the one on 
which a subject was focusing. The subject then 
focused on the BKSP ('backspace') command to 
correct the error. 

The computer recognized the selections using 
the covariance algorithm described below. All sub- 
jects were able to spell the word and to activate 
the voice synthesizer. 

Analysis of the operating characteristics of the sys- 
tem 

The process required the computer to detect a 
P300 elicited by one of a series of rapidly chang- 
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ing events. It assumed that only the rows and 
columns containing the chosen character will elicit 
the P300. However, the detection of the P300 
clearly requires the application of signal averag- 
ing, which depends, of course, on the presentation 
of many stimuli. The effectiveness of this proce- 
dure as a communication channel depends on the 
degree to which the message can be communicated 
with a small number of trials using an efficient, 
cost-effective, on-line detector of the P300. It is 
necessary, therefore, to determine the smallest 
number of trials in which the system can make the 
detections at different levels of accuracy. To de- 
termine this property of the system, we ran 10 
blocks for each of the 4 subjects in the second 
session. Our purpose was to assess the accuracy 
with which the character selected by the subject 
was identified as a function of the number of 
trials used for the detection. Four different meth- 
ods for detecting the P300 were assessed. 

We compared 2 different rates of stimulus pre- 
sentation. Half of the blocks were run with a 125 
msec ISI between the onset of the intensification 
of a given row or column and the onset of the 
intensification of the next row or column to be 
flashed and half with a 500 msec ISI. As before, 
each row was intensified for 100 msec, and then 
each of the columns was intensified similarly. Fig. 
2 illustrates the time course of events in the blocks 

T i m e  C o u r s e  o f  E v e n t s ,  1 2 5  m s e c  IS l  

4 1245  ( IT I )  

LJ  I - I  I -1  U I 

!' ~ash 'P 
Dura t ion  
t ~00 • 

AnaPysis Epoch ( 'subl r iar ' )  1 

' 2,?~ ' 
Su i l 2  

600 I 
S~t~tdal 3 

q 6O0 D 
Sub~rial 4 

Each flash serves as  ~ 600 11 
the onset of a 600 msec  Subtrlal 5 
ana lys is  epoch  ( ' sub t r i a l ' )  i 600 

Suotrial 6 

Fig. 2. T ime  course  of  events  in  the b locks  using the ISI of  125 
msec. Six co lumns  (or 6 rows) were in tens i f ied  ( ' f lash ' )  in  a 

r a n d o m  sequence for 100 msec,  at  125 msec  in tervals  (ISI). 
E E G  was recorded  f rom 20 msec  pr ior  to the first f lash unt i l  

600 msec  af ter  the las t  flash. Each flash served as the onset  of a 

600 msec  analys is  epoch ('  subtr ial ' ) .  A tr ial  compr i sed  6 flashes 

(1 f lash of each row or 1 f lash of each co lumn)  p lus  the 

assoc ia ted  da ta  col lec t ion  time, a to ta l  of 1245 msec. 

using the ISI of 125 msec. 
The relevant data consisted of the EEG dig- 

itized for 600 msec after the onset of each flash. 
The EEG was digitized continuously from 20 msec 
prior to the first flash in each trial to 600 msec 
after the sixth flash. The subsequent trial began 
approximately 620 msec after the sixth flash. The 
inter-trial intervals (ITIs) measured from the be- 
ginning of one trial to the beginning of the next 
trial, then, were 1245 and 3120 msec for the 125 
and 500 msec ISis respectively. Note the distinc- 
tion between ISI - -  the time from the onset of the 
flash of one row or column to the onset of the 
flash of the next row or column - -  and ITI - -  the 
time from the onset of one trial (6 row or column 
flashes) to the onset of the next trial. 

Each block consisted of 30 trials. Five blocks at 
125 msec ISI were followed by 5 blocks at 500 
msec ISI for 2 of the subjects, and the order was 
reversed for the other 2 subjects. 

Subjects were instructed to keep a running 
mental count of the flashes of the letter 'B '  until 
the 'choose one letter or command'  instruction 
(Fig. 1) was turned off for 500 msec and then 
turned back on. They were then to count the letter 
' R '  until the same signal appeared, then the letter 
'A, '  then ' I , '  and then 'N . '  Trials with muscle or 
EOG artifact were eliminated. After 30 uncon- 
taminated trials were accumulated, the ' choose . . . '  
instruction turned off for 500 msec, and then a 
new block began with the next letter to be 
attended. After 5 blocks at 1 ISI, the subjects 
received a short break, and then the next series 
was run. 

Thus, in effect the subject spelled the word 
'BRAIN '  in each series of 5 blocks, with ap- 
proximately 30 trials for each letter. When a trial 
was rejected for artifact, it was not recorded for 
inclusion in the signal-detection computations, and 
an additional trial was presented. Therefore, the 
total number of trials in each block viewed by the 
subject was sometimes a few more than 30, but the 

2 number of trials recorded was 30 in every case 

2 We  emphas ize  that  this  is not  a ' b i o f e e d b a c k '  exper iment .  

Our  in teres t  is no t  to t ra in  subjects  to cont ro l  the display.  Ours  

is a var ian t  of an oddba l l  pa rad igm,  and  our  purpose  is to 

de te rmine  the m i n i m u m  n u m b e r  of tr ials at  which a de tec tab le  
P300 can  be recorded.  
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Data analys& 
The speed with which a subject can communi-  

cate the element he has chosen from the matrix 
depends on the speed with which the computer 
can detect the row and the column which elicit the 
P300. When presented with averages based on 30 
trials presented at a 500 msec ISI, the computer 
can identify the correct element with complete 
accuracy using any one of several detection al- 
gorithms. However, presenting 30 trials at a 500 
msec ISI requires 93.6 sec, reducing communica- 
tion speed to about 0.01 characters/sec.  If we 
choose to base the choice of the element on the 
minimum available data, 1 trial at 125 msec ISI, 
the system will communicate at the rate of 0.8 
characters/sec,  but many of the choices will be in 
error. 

Clearly, therefore, one must improve the signal- 
to-noise ratio by averaging over a certain number  
of trials. Our purpose, then, was to estimate the 
smallest number  of trials that must be used to 
reduce the signal-to-noise level in the ERP signal 
so that the character the subject has chosen could 
be communicated at a specified level of certainty. 
We addressed this question by examining the level 
of accuracy at which each of 4 detection al- 
gorithms that are used in computing the average 
will operate given the number of trials presented 
at a given ISI. This analysis yields also an estimate 
of the smallest number  of trials that would yield a 
certain level of accuracy at a given ISI and for a 
given algorithm. By multiplying by the time re- 
quired to present the trials, we also obtained an 
estimate of accuracy as a function of time - -  the 
speed /accuracy  tradeoff function. 

Each trial contained 6 distinct events, namely, 
the flashes of each of the rows or columns, only 
one of which was task-relevant. For analytical 
purposes, each trial was divided into 6 data 
windows or subtrials, each consisting of the data 
for 600 msec after onset of the flash of a row or 
column (see Fig. 2). Thus, since the ISI was less 
than 600 msec, these subtrials contained overlap- 
ping data. For each subtrial we computed a score 
that measured the magnitude of the P300 in the 
epoch following the presentation of the row or the 
column. 

Four different algorithms were used to compute 

tlae scores: (a) stepwise linear discriminant analy- 
sis (SWDA), (b) peak picking, (c) area, and (d) 
covariance. We will briefly describe each of these 
algorithms. The interested reader can find detailed 
discussions of these procedures in Coles et al. 
(1986) and Donchin and Heffley (1976). 

(1) Stepwise discriminant analysis. SWDA is a 
classification procedure. It yields a score that mea- 
sures the 'distance'  between each epoch and the 
mean of a group of trials known to include a 
P300. This score is obtained by applying a dis- 
criminant function to the data from each epoch. 
That  function was developed on the basis of a 
' t raining set' of trials recorded while the subject 
was focusing on the first 2 letters ( 'B '  and 'R ') .  
The remaining ERPs provided the 'analysis set.' 
We used the training set data to compute the 
discriminant function that distinguished between 
the 'a t tended '  subtrials (600 msec following the 
flash of a row or column containing the attended 
cell) and the 'unat tended '  subtrials (600 msec 
following the flash of a row or column not con- 
taining the attended cell). 

(2) Peak picking. The amplitude of P300 was 
computed as the difference between the lowest 
negative point prior to the P300 window (defined 
as the time range within which the average 
attended wave form in the training set for each 
subject was positive) and the highest positive point 
in the P300 window. The window for the P300 
ranged typically between 220 and 500 msec. 

(3) Area. The 'area '  of P300 was calculated as 
the sum of the data points in the P300 window (as 
defined above). 

(4) Covariance. A P300 template was com- 
puted as the average of the attended subtrials in 
the training set for each subject. P300 scores in the 
analysis set were derived by computing the covari- 
ance of each subtrial with this template. The co- 
variance was computed using all of the points in 
the 600 msec epoch. (This is the detection proce- 
dure used in the first, pilot session.) 

The values attained from the above analyses 
were then used to determine the letter upon which 
the subject was focusing attention. Row and col- 
umn scores given by the respective algorithms 
were summed to compute a unique score for each 
cell in each pair of trials (1 trial in which rows 
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were flashed and 1 trial in which columns were 
flashed). For example, the score for 'B, '  which is 
located in the first column and the second row 
(see Fig. 1), was the sum of the score for the first 
column and the score for the second row. (By 
' f irst '  and ' second'  here we refer to the spatial 
position in the matrix, and not the temporal posi- 
tion in the sequence of row or column flashes. 
Since flashes were in random order, the ' f irst '  
column would be flashed first about one-sixth of 
the time.) 

The scores computed for each letter were 
summed across trials to determine which cell was 
identified as the cell selected by the subject. Each 
test could yield 1 correct response or 1 of 35 
possible errors. The test was considered a 'h i t '  if 
the algorithm yielded the largest total score, 
summed across trials, for the letter on which the 
subject was focusing. For example, if the subject 
was attending to the letter 'B '  and 6 trials were 
being considered in the analysis, a correct re- 
sponse would be achieved if the total of the 6 'B '  
scores - -  the scores for the rows and columns 
containing 'B '  - -  was greater than the total of the 
6 scores for any other cell in the matrix. 

Results 

The principal aim was to determine the speed 
with which the letter on which the subject is 
focusing can be determined, given the detection 
technique employed for analyzing the trials. To 
accelerate the transmission rate, the ISI was shor- 
tened and the data-collection epochs were over- 
lapped. 

A rather distinct P300 is elicited by the attended 
letter, as can be seen in Fig. 3. This figure presents 
ERP responses to intensifications of attended, or 
correct, letters and of unattended letters, averaged 
across all trials for each subject. The amplitudes 
of the P300s for all subjects at both ISis are 
presented in Table I 3 

3 I t  is ev ident  tha t  in  this  p resen ta t ion  mode  m a n y  E R P  

c o m p o n e n t s  are inc luded  in  an ove r l app ing  fashion.  Thus  the 

t ime  w indow we record may  inc lude  m a n y  c o m p o n e n t s  in 
add i t i on  to the P300. However ,  this  is no t  a ma t t e r  of concern  
in the present  context .  As  long  as we d i sc r imina te  the correct  

letter,  we have  achieved our  purpose .  

ERPs for Attended and Unattended C e l l s  

A) 1 2 5  m s e c  ISI 

- -  Attended 
---- Unattended 

1 0 p V  = 
+ -  

B) 5 0 0  msec ISI 

Subject 1 

S u b j e c t  2 

S u b j e c t  3 

S u b j e c t  4 

Time (msec) 

Fig. 3. Average  wave forms for a t t ended  vs. una t t ended  cells 

for each of the 4 subjects.  A: 500 msec ISI. B: 125 msec ISI. 

In the present context, however, the question is, 
how detectable would be the P300 elicited by a 
much smaller number  of trials? More precisely, we 
try to estimate the degree to which signal averages 
based on sample size X will yield accurate detec- 
tion of the attended letter. In other words, we had 
to estimate proportion of correct determinations 
for different sample sizes. We therefore examined 
the accuracy with which the attended letter could 
be detected as a function of the number  of trials at 
each ISI for each of the 4 detection algorithms. 

Detection accuracy was estimated by means of 
an iterative sampling technique akin to bootstrap- 
ping (Efron 1979). Bootstrapping provides an 
estimate of a parameter  in the absence of ade- 
quate data on its sampling distribution by obtain- 
ing many random sub-samples from the available 
data and computing the parameter  afresh for each 
of these sub-samples. The distribution of these 
values approximates the actual distribution. 

We randomly chose 1000 sets of 2 trials, 1000 
sets of 4 trials, and so on up to 1000 sets of 40 
trials from the analysis set. (Recall that the analy- 
sis set consisted of 30 trials for each of 3 letters, a 
total of 90 trials.) We applied the 4 signal-detec- 
tion algorithms, computed scores for each of the 
36 stimuli, and determined how many times out of 
1000 the stimulus that the subject was attending to 
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TABLE I 

P300 amplitude (~tV). Amplitude of the average P300 elicited by attended and unattended cells in the matrix, at 125 msec and 500 
msec ISI. (A) Peak-to-peak amplitude; (B) base-to-peak amplitude. 

(A) Peak to peak (B) Base to peak 

IS1 (msec) 125 500 125 500 Subj. 
no. Attended Unatten. Attended Unatten. Attended Unatten. Attended Unatten. 

1 6.4 1.5 12.5 3.5 5.0 1.1 9.8 1.8 
2 7.6 0.9 10.1 1.7 5.9 0.1 8.6 1.1 
3 5.6 1.5 14.1 2.9 4.3 0.7 11.5 2.4 
4 8.1 2.6 14.2 2.9 7.2 2.4 11.1 1.3 

w a s  a s s i g n e d  t h e  h i g h e s t  s co re .  T h i s  a n a l y s i s  w a s  

r e p e a t e d  f o r  e a c h  o f  t h e  4 a l g o r i t h m s .  

F i g .  4 i l l u s t r a t e s  t h e  i t e r a t i v e  s a m p l i n g  a n a l y s i s  

p r o c e d u r e .  I t  p r e s e n t s  t h e  r e s u l t s  o f  o n l y  o n e  i t e r a -  

tion in each of 2 specific cases. For illustrative 
purposes we have included 1 set of data where the 
discrimination between the attended and un- 
attended stimuli is quite clear and another set 

Comparison of Scores of the 36  Stimuli 

A 
! , . -  O9 

O . 
0 = 
tn 

° - -  

O =- 

A) Subject  3 
5 0 0  msec ISI 
SWDA Scores  

3 7 5  3 0 0  

2 2 5  

7 5  

- 7 5  

- -  Attended 
. . . . . . . .  Una t t ended -  Same  Row  

. . . . .  Unattended-Same Co lumn  

. . . . .  O the r  Unattended 1 8 0  

6 0  

- 6 0  

B) Subject  2 
5 0 0  msec ISI 

Covar iance  Scores  

/ '  

" ~ ~.~ ' " ; ~ " k : ~ ' ,  ,,~, ~ - : u f ' .  , ~ ' ~ i  , ~ ~,,-,~,. .-  . ~ ,  . _7  , 

- 2 2 5  I I i I t i I i I i - 1 8 0  i i 
0 8 1 6  2 4  3 2  4 0  0 8 

Trials 

I I I I I I I 

16 2 4  3 2  4 0  

Fig. 4. Examples illustrating the comparison of scores generated by the analysis algorithms, with different numbers of trials included 
in the analysis. This figure provides an example of the data that went into the speed/accuracy calculations, and is provided for the 
sake of illustration. In this figure we plot (A) SWDA scores for subject 3 in the 500 msec ISI condition and (B) covariance scores for 
subject 2 in the 500 msec ISI condition. Each line represents the score obtained for 1 letter as sample size was varied systematically 
from 2 to 40 trials/sample. Scores fall into 3 groups: (1) the 'at tended'  subtrials (solid line), which begin with a flash of the attended 
letter (and its row or column); (2) 'unat tended'  subtrials that begin with the flash of a letter (and its row or column) that shares a row 
or a column with the attended letter (dotted and chained lines); and (3) other unattended subtrials (dashed line). A correct 
identification was made whenever the attended stimulus received the highest score• Note that this figure includes data from only o n e  

iteration of the analysis procedure, i.e., it represents only 1 random sample of each size and therefore includes only 1 score for each 
letter at each sample size. Speed/accuracy results (see Fig. 5) were obtained by repeating this sampling and analysis procedure 1000 
times for each sample size and tallying the proportion of iterations in which the attended cell resulted in the highest score at each 
sample size. It can be seen that in these particular samples the attended cell did generally achieve the highest score. It can also be seen 

that there was considerable individual variability. 



M E N T A L  PROSTHESIS 517 

where the discrimination is much less clear. In 
each of these 2 figures we plot the scores assigned 
to each of the 36 letters by the application of 1 
detection technique: (a) SWDA scores for subject 
3 in the 500 msec ISI condition, and (b) covari- 
ance scores for subject 2 in the 500 msec ISI 
condition. We emphasize the illustrative purpose 
of this figure. Each plot in Fig. 4 displays the 
results of 1 out of 1000 separate iterations. 

Each line in the figure is a plot of the scores 
assigned to one of the characters plotted against 
the size of the sample used for computing the 
score. The scores of each of the 36 characters at 
each sample size appear  to fall in 3 groups: (1) 1 
'a t tended '  letter (solid line); (2) 10 unattended 
letters that share a row or a column with the 
attended letter - -  and therefore are flashed at the 
same time as the attended letter (dotted and 
chained lines); and (3) 25 other unattended letters 
- -  which are never flashed concurrently with the 
attended letter (dashed lines). 

Note that the highest score was generally ob- 
tained for the attended cell. The scores for un- 
attended cells that were in the same column or the 
same row with the attended cell are higher, in 
general, than the scores for the other unattended 
cells. The decision algorithm is, of course, 'correct '  
whenever the attended letter is assigned the highest 
score. It can be seen that this is generally the case, 
though there are differences among the subjects. 

As we noted, the analysis procedure was re- 
peated 1000 times for each combination of sample 
size (2-40 trials) and algorithm (SWDA, peak 
picking, area, and covariance), at each ISI (125 
and 500 msec). In each of the 1000 iterations, for 
each sample size, we picked a new random sample 
of the trials for inclusion in the analysis. For  a 
particular iteration, at any given sample size, each 
analysis procedure provided either a correct or an 
incorrect determination. We tallied the number of 
correct determinations for each sample size, for 
each subject, at each ISI, employing each analysis 
algorithm. 

In Fig. 5 we plot the proportion of correct 
decisions out of the 1000 iterations of the proce- 
dure at each sample size. To allow comparison of 
the data obtained with the 2 ISis, the accuracy 
data are plotted against the t i m e  required to pre- 
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Fig. 5. Graphs of the accuracy of each of the 4 algorithms in 
identifying the attended stimulus, as a function of the number  
of  trials cosidered in the analysis. Each of the graphs presents 
the increase in the accuracy of the algorithm as sample size 
increases. To facilitate the comparison of the 2 ISis and the 
analysis of the speed of the system, the number  of trials has 
been transformed to the time required to present the trials. 
Time is the product of  the number  of trials considered and the 
duration of a single trial (ITI). Accuracy is the percent of 
correct identifications of the attended cell out  of 1000 itera- 

tions of I of  the 4 algorithms. 

sent a given number  of trials rather than against 
the number  of trials. As can be seen in Fig. 5, 
subjects differ in their ability to use the system 
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TABLE II 

Speed/accuracy: fastest algorithms. Times required to obtain (A) 80% and (B) 95% accuracy, by subject and ISI, using the fastest 
algorithm in each case. Accuracy is the percent of correct identifications of the attended cell out of 1000 iterations of the 
signal-detection algorithm. Time is the product of the number of trials considered and the duration of a single trial (ITI). (Times have 
been interpolated when the least number of trials required to reach 80% or 95% accuracy not only reached but in fact exceeded that 
level.) Times for the fastest combination of an algorithm and an ISI for each subject are followed by two asterisks ( * * ). Time in sec; 
IS1 in msec. 

(A) 80% accuracy (B) 95% accuracy 

Subj. ISI 125 500 125 500 

no. Time Algo. Time Algo. Time Algo. Time Algo. 

1 15.7 * * SWDA 28.2 Peak 21.6 * * SWDA 42.5 Peak 
2 33.4 SWDA 23.3 * * Peak 57.5 SWDA 35.5 * * Peak 
3 22.3 SWDA 11.1 * * SWDA 46.4 SWDA 17.6 * * SWDA 
4 36.7 Cov 17.7 * * Peak 64.0 Area 29.3 * * Peak 

Mean 27.0 20.1 47.4 31.2 

Mean time to 80% accuracy, Mean time to 95% accuracy, 
fastest ISI and algorithm fastest ISI and algorithm 
for each subject 20.9 for each subject 26.0 

and  in the relative effectiveness of the different 
detect ion algorithms. All subjects, however, were 

able to achieve a high level of accuracy in com- 
munica t ing  their choices to the system at a speed 

of some seconds per  choice. 
Table  II presents  speed and  accuracy figures 

for the fastest a lgori thm for each subject at each 

ISI. When  the subjects '  opt imal  ISis and  signal- 
detect ion algori thms were used, the mean  time 
required to achieve 80% accuracy of de te rmina t ion  
of the 1 s t imulus out  of 36 that the subject was 
a t t end ing  was 20.9 sec. For  95% accuracy, the 
mean  time required was 26.0 sec. A choice of 1 out 
of 36 conta ins  5.2 bits of informat ion,  so the speed 
at 95% accuracy was 0.20 b i t s / sec ,  or 12.0 
b i t s / r a in .  By using the ' B K S P '  (backspace) com- 

m a n d  (see Fig. 1) with the same speed and  accu- 

racy, a subject  could correct errors and  achieve 
over 99.9% accuracy with a speed of 0.18 b i t s / sec ,  

or 10.8 b i t s / r a in .  

S W D A  and  peak picking proved to be the most  
efficient algorithms. At 125 msec ISI, S W D A  was 
the fastest a lgori thm to reach both  80% and  95% 
accuracy in 3 out of 4 cases. At  500 msec ISI, peak 
picking was fastest to reach both  80% and 95% 
accuracy in 3 out of 4 cases, (A possible explana- 
t ion of this difference in algori thm effectiveness as 
a func t ion  of ISI is discussed below.) When  con- 

sidering the 4 subjects, 2 ISis, and  2 accuracy 
criteria (80% and  95%), S W D A  yielded the fastest 

times to reach the accuracy cri ter ion in 8 cases out  
of 16, and  peak picking in 6 cases. Area and  

covariance were each fastest in 1 case. 

Table  III  shows the times taken by each of the 
4 algorithms to reach 80% and  95% accuracy for 

each subject at each ISI. As shown in Tables  II 
and  III  and  Fig. 5, different s ignal-detect ion al- 
gori thms were more effective for different sub- 
jects. This is a result of differences in the char- 
acteristic ERPs for different subjects and  dif- 
ferences in the in format ion  util ized by the al- 
gorithms. 

Discussion 

This s tudy addressed 2 dist inct  questions.  We 

sought to determine if it is indeed the case that the 
P300 can be employed as a switch by means  of 

which the subject can toggle a choice. This ques- 
t ion is clearly answered in the affirmative. The 
specific a r rangement  used to present  choices to 
the subject amplifies the power of the P300 to act 
as a b inary  switch, as the series of choices allows 
for the reliable ident i f icat ion of 1 choice among  36 
dist inct  items. In  principle,  this method  can be 
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TABLE II l  

Speed/accuracy:  4 algorithms. Times required to obtain (A) 

80% and (B) 95% accuracy, by subject and ISI for the 4 

signal-detection algorithms. Accuracy is the percent of correct 
determinations of the at tended cell out of 1000 iterations of the 

algorithm. Time is the product of the number of trials con- 
sidered and the duration of a single trial (ITI). (Times have 

been interpolated when the least number of trials required to 
reach 80% or 95% accuracy not only reached but in fact 

exceeded that level.) Times for the fastest algorithm at each ISI 
for each subject are followed by an asterisk ( * ). Times for the 

fastest combination of an algorithm and an ISI for each 
subject are followed by two asterisks (* * ). Cases where the 
algorithm did not result in 80% (A) or 95% (B) accuracy after 

80 trials are indicated by 'X. '  

Subj. (A) Time to 80% accuracy (B) Time to 95% accuracy 

no. 125 msec ISI 500 msec ISI 125 msec ISI 500 msec 1SI 

Peak picking 
1 X 28.2 * X 42.5 * 

2 X 23.3 * * X 35.5 * * 

3 39.8 17.3 X 26.0 
4 38.8 17.7 * * 70.4 29.3 * * 

S WDA 
1 15.7 * * 114.8 21.6 * * 202.8 
2 33.4 * 56.9 57.5 * X 
3 22.3 * 11.1 ** 46.4 17.6 ** 

4 54.4 26.7 X 49.5 

Area 
1 29.1 39.9 76.7 59.3 

2 49.0 56.6 X X 

3 29.3 12.6 55.8 17.9 

4 45.5 44.9 82.2 52.9 

Covariance 
1 X 42.9 X 62.4 

2 X X X X 

3 41.8 15.5 82.2 22.6 

4 36.7 28.6 64.0 52.0 

used in a manner  that would allow for a choice 
among more items, as the number  of rows and 
colunms can be increased. However, such an in- 
crease would entail a cost in that the total number  
of flashes required for each choice would be in- 
creased. The optimal size of the matrix remains a 
matter  for further investigation. 

The answer to this first question was not en- 
tirely surprising. There is by now an extensive 
literature that establishes the reliability with which 
the P300 is elicited by rare, task-relevant events 

within the framework of the oddball  paradigm. It 
is quite clear that almost any arrangement that 
would impose a categorization on a series of events, 
however abstract the categorization, can be used 
to elicit sizeable P300s, provided that the 2 cate- 
gories are presented in a Bernoulli sequence, that 
the stimuli play an important  role in the subject's 
information processing, and that one of the cate- 
gories occurs with a somewhat lower frequency 
(see Fabiani et al. 1988, for a discussion of the 
varieties of the oddball paradigm). The use of very 
short ISis - -  considerably shorter than the latency 
of P300 - -  did not interfere in any significant 
manner with elicitation of the P300 in the oddball  
paradigm. Our data thus confirm that the P300 
can be used as a communication channel by tak- 
ing advantage how it responds to task-relevant 
events in the oddball paradigm, as used in the 
arrangement described above. 

There is, however, a second question the answer 
to which was by no means self-evident. The utility 
of a communication channel based on the P300 
depends, as do all communication channels, on 
the signal-to-noise ratio. It is evident that the P300 
on which this channel is based is buried in the 
'polyneural  roar of the EEG, '  to use Ross Adey's  
felicitous phrase. The detection and measurement 
of the P300, as is true for other ERP components,  
requires signal averaging. Thus, it was conceivable 
that while the P300 can in principle serve as a 
switch, its reliability under usual signal-to-noise 
conditions would have been insufficient for actual 
use. Our main purpose in this study, then, was to 
examine the operating characteristics of the com- 
munication channel. 

The prime task of the channel is to communi-  
cate the choice the subject has made among the 36 
options. Thus, the performance index for the 
channel is the accuracy with which this choice is 
communicated as a function of the speed with 
which the channel operates. The speed is con- 
trolled by the rate at which the stimuli are pre- 
sented. The accuracy is controlled by the effi- 
ciency of the signal-to-noise reduction achieved by 
the detection algorithms. It  is for this reason that 
we used as independent variables the inter-stimu- 
lus interval within each trial and the various detec- 
tion procedures. 
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The conclusions are quite clear. The channel 
can operate reasonably well at the speed of 12 
b i t s /min .  A character, chosen from among 36 
items, can be detected with 95% accuracy within 
26 sec. 

The inter-stimulus interval proves to be an im- 
portant  variable. To obtain accurate discrimina- 
tion of the attended stimulus, a certain signal-to- 
noise reduction is required. This can be achieved 
by increasing the interval between stimuli from 
125 to 500 msec, allowing for a better definition of 
the P300. Alternatively, the signal-to-noise reduc- 
tion can be achieved by an increase in the number  
of trials. Which of these methods is more effective 
depends on the subject and the signal detection 
algorithm. 

The results show that different detection meth- 
ods varied in their effectiveness when applied to 
the data of the different subjects. The differences 
in effectiveness are due to an interaction between 
the nature of the procedures and the specific 
attributes of the subject's data. It is useful to 
consider the differences among the detection al- 
gorithms. 

Comparison of the different algorithms 
Covariance computes, essentially, how similar 

the individual ERPs are to a template consisting 
of the average wave form for the attended cell in 
the training set. All time points are included, and 
each point is weighted according to the mean 
amplitude of that point in the training set. 

SWDA involves much more extensive computa-  
tions on the training set data than covariance, but 
it is in general more efficient because it gives 
greater weight to time points that were more effec- 
tive in distinguishing between attended and un- 
attended cells in the training set. 

The primary weakness of both SWDA and 
covariance is that they are sensitive to latency 
variability. If an ERP component,  such as P300, 
appears in a given trial with longer or shorter 
latency than the modal latency in the training set, 
then the discriminant weights (or, similarly, the 
weights in the covariance algorithm) will not be 
applied to the points that best characterize the 
P300, and accuracy will be lost. Latency jitter 

during the training set, also, will add noise to the 
system and result in less effective weights. 

Peak picking, on the other hand, is not sensitive 
to latency variability. The P300 peak can be located 
anywhere in a relatively wide time window. All of 
the information contained in the other points, 
however, is lost in this procedure. Moreover, at a 
short ISI, insensitivity to latency variability be- 
comes a weakness instead of a strength. Since the 
peak picking algorithm locates a maximum value 
at any point within a considerable range, it is 
susceptible to falsely attributing a P300 peak gen- 
erated by a previous or subsequent flash to the 
stimulus being considered. This fact undoubtedly 
accounts for a large part  of the interaction be- 
tween algorithm and ISI shown in Tables II and 
III,  where peak was the most accurate algorithm 
at 500 msec ISI and one of the least accurate at 
125 msec ISI. 

The area analysis algorithm, like the covariance 
algorithm, considers all of the points in a broad 
range, but it is a purely additive, rather than 
multiplicative, procedure and does not use a train- 
ing set. Therefore it misses some information con- 
tained in a consistent distinctive ERP shape and 
time course but also avoids some of the noise 
introduced into SWDA and covariance by varia- 
bility in the time course and shape of ERPs. It 
takes advantage of information contained in a 
broad flat ERP that is lost in the peak picking 
algorithm, but by the same token it is influenced 
by noise at points at a distance from the peak. 

Because of these differences, different al- 
gorithms are more effective in different cases. For 
a subject whose P300s have a distinct peak with 
considerable latency variability, peak picking is 
likely to be the most efficient algorithm, at least 
when a relatively long ISI is used. For a subject 
whose ERPs have a distinctive shape and little 
latency variability, SWDA is likely to be the most 
efficient. For a subject whose P300s tend to be 
broad and flat, without much of a peak and with 
considerable latency variability, the area measure 
is likely to be the most effective. In a clinical 
application, data such as those reported here could 
be collected and analyzed, and the optimal al- 
gorithm and timing parameters  for the individual 
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could be determined and utilized for real-time 
signal detection. 

Conclusions, applications, and potential improve- 
ments 

The above differences notwithstanding, the 
general conclusion is sustained by the data. It is 
quite possible to use the P300 as an effective 
communicat ion switch, and the communication 
channel can be organized so that the choices can 
be communicated using a relatively small number  
of trials. We can assume for the rest of this 
discussion that the characters can be communi-  
cated with reliability at the rate of 1 character 
every 26 sec, or 2.3 characters/rain.  

This is, of course, rather a low rate for a 
communication channel. Even a slow typist can 
type 150 characters /min.  Voice communication is 
even faster. However, it is equally clear that when 
no other channel is available because the skeletal 
musculature is completely disabled, the ability to 
communicate  even at the rate of a few charac ters /  
min would be most welcome. 

The value of the P300 channel may be further 
enhanced if the procedure is used as a method for 
choosing from a menu of commands rather than 
as a method for spelling words. The elements in 
the matrix may well be words such as 'nurse, '  
'water , '  'pa in , '  or 'dinner. '  Each of these choices 
may in turn call for another menu. In such a 
paradigm the rate of communication would be 
enormously amplified, even though the domain of 
the communication would be constricted. Further- 
more, the communication speed we have assessed 
in this study examined the channel without any 
at tempt  to benefit from a number  of obvious 
procedures for accelerating the communication. 
As a computing device must be a part  of the 
system, it is relatively trivial to incorporate in the 
channel the known constraints of the language. 
With each letter presented the number  o f  actual 
options is reduced, as combinations of characters 
appear  with quite uneven probabilities in English. 
The system may be allowed to 'guess'  to that, for 
example, having detected a ' T H '  pair it is rela- 
tively certain that the following character will be 
one of the vowels. 
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It may also be possible to enhance the speed of 
the system by incorporating additional compo- 
nents of the ERP. If, for example, we were to 
present the rows and columns in a regular se- 
quence, one would expect to see a CNV develop 
as the time for the appearance of the correct 
column, or row, neared. The relative effectiveness 
of a random presentation utilizing the P300 solely 
and a presentation that capitalized on both a 
CNV and the P300 is a matter  for further re- 
search. 

We are well aware that the application of this 
system in a clinical context will present severe 
logistical problems that do not arise when we test 
young, healthy adults. In one preliminary test we 
conducted with 1 locked-in patient, we discovered 
that it was necessary to add a differential ampli- 
fier that subtracted electrical activity generated by 
his continual involuntary eye movements  from the 
EEG before the patient could use the system. It is 
clearly necessary to examine the effectiveness of 
the system we propose with patients as subjects. 

The procedures we describe in this paper  and 
the data we adduce serve to illustrate the feasi- 
bility and the limitations of the 'biocybernet ic '  
concept. The term 'biocybernetics '  has been used 
to describe an at tempt sponsored during the 1970s 
to develop a 'biocybernetic '  channel. That channel 
was intended to enhance the communicat ion be- 
tween people and machines by adding channels of 
communication that employed psychophysiologi- 
cal mechanisms. Several appraoches were pro- 
posed (Gomer  et al. 1979). There were several 
attempts to use the ERP as a switch. Vidal and his 
associates have, for example, used the differences 
between responses to different checkerboards 
which flashed on different parts of the screen to 
create an EEG-driven joystick that controlled the 
movements of a displayed 'mouse '  (Hickman and 
Vidal 1976). Donchin and his colleagues, within 
the framework of the biocybernetic program and 
in subsequent work, used the P300 as an index of 
mental workload (Donchin et al. 1986b for a 
review). In the assessment of workload, however, 
the P300 is used as a metric rather than as a 
switch. 

A caveat may be in order. The biocybernetic 
concept has often been mistaken, especially in the 
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popular press, as an attempt to use the computer 
to 'read the mind' of  a subject. Here, too, it is 
possible to be deceived by the appearance of  a 
subject 'writing to the screen' or 'speaking through 
the computer' with the brain waves. One may be 
tempted to see this as a direct communicat ion 
between the computer and the mind that somehow 
bypasses the control that people have over the 
inner workings of their minds. Such an innovation 
would be treated with dismay by many, and with 
glee by some. We emphasize that this paper does 
not report the development of a means by which 
one can eavesdrop on the mind (Donchin 1987). 

The procedure we describe above accomplishes 
no more than to provide the subject with a switch 
that can be wielded at the subject's discretion. The 
recording would be of no use whatsoever if the 
subject chose to ignore our instructions and to 
focus attention elsewhere. Furthermore, the probes 
we attach to the head record signals that can be 
interpreted solely within the framework of the 
stimulus arangement we have provided. Thus, there 
is no more 'mind reading' in the procedures we 
describe than there is when a person is handed a 
pencil and asked to record impressions. The con- 
tents, and the reliability, of  the information ob- 
tained will depend to a degree on the sharpness of  
the pencil; but the subject's willingness to report 
and the accuracy of these reports will b e  the 
factors that ultimately determine the utility of  the 
communication.  We report here that the P300 can 
serve as a pencil, and that the pencil is actually 
rather sharp. The mind, however, retains control 
over the use of  the pencil. 
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